
© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c503

An Efficient Data Mining Approach on Compressed

Transactions

Arpana Jaiswal, Dr. Amit Khare, Rahul Moriwal

 M.tech Scholar, Professor, Assistant Professor
Department of Computer Science and Engineering,

Acropolis Institute of Technology & Research, Indore, Madhya Pradesh, India.

ABSTRACT:

 In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited

resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good

solution which can lower the required space. Data mining has many useful applications in recent years because it

can help users discover interesting knowledge in large databases. However, existing compression algorithms are

not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then

perform the data mining process. However, they all lack the ability to decompress the data to their original state

and improve the data mining performance. In this research a new approach called Mining Merged Transactions

with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of

transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which

are impossible to become frequent in order to improve the performance of mining association rules. The

experiments show that M2TQT performs better than existing approaches.

I .INTRODUCTION :

A great amount of data is being accumulated very rapidly in the Internet era. Consequently, it takes a lot of time

and effort to process these data for knowledge discovery and decision making. Data compression is one of good

solutions to reduce data size that can save the time of discovering useful knowledge by using appropriate methods,

for example, data mining. Data mining is used to help users discover interesting and useful knowledge more easily.

It is more and more popular to apply the association rule mining in recent years because of its wide applications in

many fields such as stock analysis, web log mining, medical diagnosis, customer market analysis, and

bioinformatics. In this research, the main focus is on association rule mining and data pre-process with data

compression.

M.C. Hung et al. proposed a knowledge discovery process from compressed databases in [1] which can be

decomposed into the following two steps:

(1) Data pre-process step: Data pre-process transforms the original database into a new data representation where

several transactions are merged to become a new transaction. Eventually, it generates a new transaction database at

the end of the data pre-process step.

(2) Data mining step: It uses an Apriori-like algorithm [11]-[14] of association rule mining to find useful

information. Details are described later. There are some problems in this approach. First, the compressed database

is not reversible after the original database is transformed by the data pre-process step. It is very difficult to

maintain this database in the future. Second, although some rules can be mined from the new transactions, it still

needs to scan the database again to verify the result. This is because the data mining step produces potentially

ambiguous results. It is a serious problem to scan the database multiple times because of the high cost of re-

checking the frequent itemsets. Another solution was developed by Mafruz Zaman Ashrafi et al. [2]. However,

they suffer from similar problems mentioned above. It is even a bigger challenge to maintain the compressed

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c504

database in the future. In addition, it spends too much time to check candidate itemsets in the data mining step. In

this research, a more efficient approach, called Mining Merged Transactions with the Quantification Table (M2

TQT) is proposed, which can compress the original database into a smaller one and perform the data mining

process without the above problems. Our approaches have the following characteristics: (a) The compressed

database can be decompressed to the original form. (b) Reduce the process time of association rule mining by using

a quantification table. (c) Reduce I/O time by using only the compressed database to do data mining. (d) Allow

incremental data mining. The rest of the paper is organized as follows. The background and related works are

provided in Section 2. The proposed algorithm is described in Section 3. The experimental environment and results

are presented in Section 4. Finally, Section 5 concludes the paper and discusses the future work.

II. RELATED WORK:

When making decisions, people would like to have enough information to avoid making wrong decisions that may

cause losses. Data mining can be used to find useful information as a part of knowledge discovery in databases

(KDD) for better decision-making. KDD can convert source data into useful information using the main process

[3] depicted in Fig. 1.

The goal of data preprocessing is to transform the input data into a suitable form for data mining or analysis. In

general, data mining techniques can be divided into three categories: classification [4], [5], clustering [6], and

association rule [11]. Classification is the process that data is divided into different classes with the known

property. First, data is divided into two datasets which are training dataset and testing dataset. Second, a

classification model is generated from the training dataset and then tests are made to verify the model’s accuracy.

Finally, the verified model is used to classify new transaction data into respective classes. Clustering is the process

that data is divided into mutiple groups in which the data are similar. It is an unsupervised process. Association

rule can be expressed as “if A, then B” after satisfying the measures of support and confidence. For example,

assume that a customer buys milk and bread whereas another buys milk and meat. One would like to discuss “if a

new customer buys milk, then he/she will buy bread too” or “if a new customer buys milk, then he/she will also

buy meat”. The concept of association rule mining in the next subsection. Data post–processing is to ensure the

result is valid and usable. For example, visualization can be used for analysts to explore the data mining results

from a variety of viewpoints. This can help users better utilize the mined rules or patterns. It is more and more

popular for many users perform association rule mining in recent years. Many approaches are proposed [7-14], [17]

in association rule mining Let I = {i1, i2, …, im} be a set of items. Let D be a transaction database which contains

a set of transactions. Let t= (tid, t-itemset) be a transaction. Tid is a transaction number and t-itemset contains a set

of items. Let X be a set of items. If a transaction t contains X if only if X ⊆ t. Length of a transaction which

contains a K-itemset is K. There are two important measurements which are support and confidence in association

rule mining. Support is the frequency of occurring patterns in D and confidence is the strength of implication. Their

definitions are as follows: (1) Support (X) = |T(X)| / |D| (2) Confidence (X→Y) = Support (XY) / Support (X) T(X)

is any transaction in D that contains X. |D| is the total number of transactions in D. We can define what we think an

interesting relation is in a transaction database.

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c505

In support-confidence framework, if it is an interesting relation for X →Y，then X and Y must be frequent. How

to define a frequent relation? There are two conditions. One condition is support(X) ≧ minsupport and support(Y)

≧minsupport(Y). Another is Confidence (X→Y) ≧ minconfidence. Minsupport and minconfidence are user-

defined thresholds. The problems of mining association rules are mainly divided into two sub-problems. One is to

discover the frequent itemsets and another is to generate the association rules. The first problem is more difficult

than the second one. Most papers are focusing on the first problem. The apriori [8] algorithm is one of the classical

algorithms in the association rule mining. It uses simple steps to discover frequent itemsets. Apriori algorithm is

given in Fig. 2. Lk is a set of k-itemsets. It is also called large k-itemsets. Ck is a set of candidate k-itemsets. How

to discover frequent itemsets? Apriori algorithm finds out the patterns from short frequent itemsets to long frequent

itemsets. It does not know how many times the process should take beforehand. It is determined by the relation of

items in a transaction. The process of the algorithm is as follows: At the first step, after scanning the transaction

database, it generates frequent 1-itemsets and then generates candidate 2-itemsets by means of joining frequent 1-

itemsets. At the second step, it scans the transaction database to check the count of candidate 2-itemsets. It will

prune some candidate 2-itemsets if the counts of candidate 2-itemsets are less than predefined minimum support.

After pruning, the remaining candidate 2-itemsets become frequent 2-itemsets which are also called large 2-

itemsets. It generates candidate 3-itemsets by means of joining frequent 2-itemsets. Therefore, CK is generated by

joining large (K-1)-itemsets obtained in the previous step. Large K itemsets are generated after pruning. The

process will not stop until no more candidate itemset is generated.

Since most data occupy a large amount of storage space, it is beneficial to reduce the data size which makes the

data mining process more efficient with the same results. Compressing the transactions of databases is one way to

solve the problem. [1] Proposed a new approach for processing the merged transaction database. It is very effective

to reduce the size of a transaction database. Their algorithm is divided into data preprocess and data mining. The

overview of the approach is shown in Fig. 3.

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c506

There are two sub-processes in the data preprocess. One sub-process transforms the original database into a new

data representation. It uses lexical symbols to represent raw data. Here, it’s assumed that items in a transaction are

sorted in lexicographic order. Another sub-process is sorting all the transactions to various groups of transactions

and then merges each group into a new transaction. For example, T1= {A, B, C, E} and T2 = {A, B, C, D} are two

transactions. T1 and T2 are merged into a new transaction T3= {A2, B2, C2, D1, E1}. Fig. 4 shows an example of

the sort grouping method and Fig. 5 shows an example of data mining sub-process.

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c507

The process called merge-mining algorithm is used to find frequent itemsets from the new transaction DM. There

are two phases in this algorithm. The first phase is finding frequent itemsets. The second phase is to prune

redundancy. It is possible that frequent itemsets generated in the first phase might not exist in the DM. For this

reason, it needs to verify those frequent itemsets by scanning DM again. Fig. 6 is the pseudo code of merge-mining

algorithm. The notations are shown in Fig. 7.

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c508

Pincer-Search algorithm [9] is an Apriori-like algorithm. It takes advantage of Apriori algorithm to find maximal

frequent itemsets. The process is mainly divided into two parts, bottom-up search and top-down search. Bottom-up

search uses the process similar to Apriori algorithm. The key is the top-down search. Top-down search is to find

maximal frequent itemsets by using the information generated in bottom-up search. And then bottom-up search is

to find frequent itemsets by using the information generated in top-down search. They are performed in turns until

all of the maximal frequent itemsets are found. The pseudo code of Pincer Search algorithm is shown in Fig. 8

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c509

III. PROPOSED METHOD :

The description of the proposed algorithm focuses on compressing related transactions and building a

quantification table for pruning candidate itemsets that are impossible to become frequent itemsets. Finally, an

example is provided to show the processes of our method. To simplify the description, it assumes the items in each

transaction are presented in a lexicographical order. A. Overview Algorithms like [1], [2] compress transactions to

reduce the size of a transaction database. Then, they use Apriori-like algorithms to mine the compressed database.

Whereas the two phases approach of compression and data mining are used, they suffer the following problems:

(1) In the data compression phase, the original database cannot be recovered to support transaction updates.

 (2) In the data mining phase, a lot of candidate itemsets could be generated in a large transaction database. Since

both [1] and [2] need to scan the database more than once, they have a much higher process cost. The first problem

is due to the lack of rule or constraint in the process of merging transactions in the data compression phase.

Therefore, the compressed database can not be decompressed to its original form In addition, they don’t use user-

defined threshold to filter infrequent 1-itemsets from the original database.. Another problem is that Apriori-like

algorithms generate a lot of candidate itemsets and need to check the candidate itemsets by scanning the database.

It is very time-consuming. Our goal is to take the advantages of [1] and Apriori algorithm without suffering from

the problem of checking candidate itemsets and recovering the database for new data. In order to provide a better

performance, we limit the number of database scan to be one in the data compression phase and build a

quantification table. In the data mining phase, we use the same approach of Apriori algorithm to generate candidate

itemsets and reduce the number of candidate itemsets by using the quantification table. We also reduce the time of

scanning the database. We present a novel approach which can (1) support local transaction variation (2) recover

the transaction database to its original state (3) make the compressed database much smaller than the original one

(4) reduce data mining time We called our approach the Mining Merged Transactions with the Quantification

Table (M2TQT) which has three phases: (1) merge related transactions to generate a compressed database (2) build

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c510

a quantification table (3) discover frequent itemsets B. M2TQT Approach First, M2TQT uses the transaction

relation distance to merge the relevant transactions. The definition of the transaction relation distance is defined in

Section C. Section D introduce how to build a quantification table in Section D. Then, it illustrates the process of

compressing a database in Section E. Next, Section F shows how to compute support of itemsets from minimum-

frequency function in Section F. Finally, it explains how to recover data from the compressed database in Section

G.

C. Transaction Relation Distance Based on the relation distance between transactions one can merge transactions

with closer relationship to generate a better compressed database. Here the transaction relation and transaction

relation distance are defined as follows: Definition 1: (1) Transaction Relation: The relation between two different

transactions T1 and T2 is that T1 is either a subset or a superset of T2. (2) Transaction Relation Distance: Distance

is the number of different items between two transactions. Example 1: T1={ ABCE} and T2={ ABC} ,DT1-T2= 1

Example 2: T3={ A} and T4={ C } ,DT3-T4= 2

D. A Quantification Table To reduce the number of candidate itemsets to be generated, additional information is

required to help prune non-frequent itemsets. A simple quantification table is used to record this information when

each transaction is processed. Assuming the items in a transaction appear in a lexicographical order, our approach

starts working from the left-most item and calls it a prefix-item. After finding the length of the input transaction as

n, it records the count of the itemsets appearing in the transaction under the respective entries of length Ln, Ln-1,..

L1. A quantification table is composed of these entries where each Li contains a prefix-item and its support count.

An example database in Table I is used to show the construction of a quantification table in Table II.

For instance, after reading the transaction {ABCDE} of TID 100, it knows the transaction length n is 5. For the

prefix-item A, the counters under L5 to L1 are all increased by one from the initial value of zero. That is, A1

appears in each Li, where i = 5 to 1. For the prefix-item B, the counters under L4 to L1 are all increased by one as

well. That is, B1 appears in each Li, where i = 4 to 1. The same process is performed for items C, D, and E.

Similarly, after reading TID 200 {CDE}, the table has C2 in L3, L2, and L1; D2 in L2 and L1; E2 in L1. Finally,

with the last transaction {ACD}, it will increase the counters by one from A1 to A2 in L3, L2, and L1; C2 to C3 in

L2 and L1; D2 to D3 in L1. Table 2 shows the result of building the quantification table.

With this table, we can easily prune the candidate itemsets whose counters are smaller than the minimum support.

E. The Process of Database Compression Let d be a relation distance and it is initialized to 1 at the beginning.

Transactions will be merged into their relevant transaction groups in the merged blocks based on the transaction

relation distance. M2TQT consists of the following steps: Step 1: Read a transaction at a time from the original

database. Step 2: Record the information of the input transaction to build a quantification table. Step 3: Compute

the length n of the transaction. Step 4: If the merged block is not empty, read the relevant transaction groups from

the merged block. Step 5: Compute relation distance between the transaction and relevant transaction groups. If the

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c511

transaction is a superset of the longest transaction of a relevant transaction group, a subset of the smallest

transaction of a relevant transaction group, or equal to one transaction of a relevant transaction group, it can be

merged into the relevant transaction group. For example, we assume d=1. Two transactions {BCG} and {BG} are

merged into a relation transaction group {BCG=2.1.2}. A “=” symbol is used to separate items and their respective

support counts. We read another transaction {BC} and compute the relation distance between {BCG=2.1.2} and

{BC}. Since the relation distance is 1, {BC} is merged into the relation transaction group. Finally, the relevant

transaction group becomes {BCG=3.2.2}. Step 6: Compute the relation distance between the transaction and those

transactions coming from (n+d) block, n block, and (n-d) block where n > d. If it finds the satisfied relevant

transactions, merge the transactions to become a relevant transaction group and then classify it as (n+d) merged

block, n merged block or (n–d) merged block. If no relevant transaction can be found, the transaction is classified

as n merged block. Step 7: Repeat the above six steps until the last transaction is read. Step 8: Read a transaction

from the merged blocks. Step 9: Compute the relation distance between the transaction and all other transactions in

the relevant transaction groups. If the transaction is a sub-transaction of the maximum length transaction of a

relation transaction group and its distance is satisfied, it can merge the transaction into the relation transaction

group to generate a new count. The process continued until the last transaction is read. Step10: Set d to d+1.

Step11: Repeat the above steps 8 - 10 until no more relation distance is found between transactions. F. Minimum-

frequency Function The minimum-frequency function takes original transactions and merged transactions as input.

It returns the minimum number of itemsets in the transactions. For example, let a candidate 2-itemset C2 be {BC,

AE} and merged transactions of T* be {{AE=2.1}, {BCG=2.1.2}, {CDEG=2.3.3.1}, {ABCE}, {C}}. After calling

minimum-frequency function with T* being the input, it returns 0+1+0+1+0=2 for BC and 1+0+0+1+0=2 for AE.

This is an efficient function to count the number of itemsets in the transactions. G. Recover Data from Compressed

Database to Original Database With the proposed approach it can recover data from the compressed database.

Assume the relation distance is equal to 1. A merged transaction is expressed as = c1, c2…ck.. cn-1.cn, where s1,

s2… , sk , sn-1, sn are items and c1, c2…, ck, cn-1, cn are their corresponding support counts separated by “.”. The

smallest count in ci for i = 1 to n is the support of the longest transaction, i.e., { s1, s2… , sk , sn-1, sn }. If ck is the

smallest count in c1, c2…, ck, cn-1, cn , then the count of the longest transaction { s1, s2… , sk , sn-1, sn } is ck.

Therefore, the transaction { s1, s2… , sk , sn-1, sn } is recovered and the merged transaction becomes = c1-ck.c2-

ck… cn-1-ck. cn-ck. The items with a zero count are removed from the merged transaction. Repeat the above

process to find the next longest transaction in the merged transaction until no count left. For example, the merged

transaction =3.1.4.2 has the smallest count of 1 such that the count of transaction is 1. Next, decrease the count of

each item in by 1 to get =3-1.4-1.2-1 = 2.3.1. Note that item B in the merged transaction is removed since it has a

zero count. Next, the smallest count among A, C, and D is also 1 such that the count of transaction is 1. Then, the

merged transaction becomes ==2-1.3-1=1.2 and the smallest count of 1 is the count of transaction . Finally, =2-1=1

and we have decompressed the merged transaction =3.1.4.2 to get back the original transactions {ABCD}, {ACD},

{AC}, {C}. Here, {{ABCD}, {ACD}, {AC}, {C}} also satisfy the specified relation distance. H. A Simple

Example To illustrate the process of the proposed approach, a simple example is shown below. There are 9

transactions with a total number of 6 distinguished items in the original database as shown in the left-hand side of

Fig. 9. Assume the minimum support is 2 meaning that an itemset is frequent if its count is greater than or equal to

2.

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c512

Phase 1: The first step is to compress the original database after scanning their transactions. Assuming the

transaction relation distance =1, read the first transaction {ABCE} to compute its length n = 4 and put it into

Length-4 block. Next, read transaction {CDE} to get the length n = 3 and then compute transaction relation

distance between {ABCE} and {CDE} to get the distance of 3. They cannot be compressed because the relation

distance is not equal to 1. Therefore, transaction {CDE} is put into Length-3 block. After reading the third

transaction {DE} with a length of 2, it examines if the transaction appears in any merged transactions. If it exists,

they are merged to generate a new merged transaction with increased counts. On the other hand, it examines

whether the computed transaction relation distances with all merged transactions agree to the assumed distance. If

it exists, transaction {DE} is merged with the existing merged transaction which satisfies the transaction relation

distance. If transaction {DE} has no relation in the merged transactions, it will check with the items in L=1, L=2

and L=3 blocks. Since the relation distance between {DE} and {CDE} is 1, they are merged into a new transaction

{CDE=1.2.2}. This new transaction is put into Length-3 merged block. Subsequent transactions are processed in

the same way. The compressed database is shown in the right-hand side of Fig. 9 where the number of transactions

becomes 5. Phase 2: When the compressed database is generated, it also builds a quantification table at the same

time as shown in Fig. 10. Phase 3: The compressed database is used to generate frequent itemsets with any Apriori-

like algorithm for association rule mining. The minimum support is set to 2. From the quantification table, it can

generate frequent 1-itemsets {A, B, C, D, E, G}. Frequent 1-itemsets are used to generate candidate 2-itemsets. At

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c513

the same time, it checks the counts of itemsets in L2 of the quantification table to prune the candidate itemsets

which are impossible to become frequent itemsets. The generated candidate 2-itemsets are {AB, AC, AD, AE, AG,

BC, BD, BE, BG, CD, CE, CG, DE, DG, EG}. Because the item’s frequency is recorded in the merged

transactions, one can use the minimum-frequency function to determine the count of a candidate itemset. The

minimum-frequency function returns the minimal number of item occurrences in a merged transaction and it also

returns a value of 1 for an original transaction. For instance, let C2 be {{A E}, {CG}} and compressed transaction

T* = {{AE=2.1}, {BCG=2.1.2}, {CDEG=2.3.3.1}, {ABCE}, {C}}. After calling the minimum-frequency function

for {A E}, it returns {1, 0, 0, 1, 0}. The total frequency of {A E} is 1+0+0+1+0=2. For {CG}, it returns {0, 1, 1, 0,

0}. The total frequency of {CG} is 0+1+1+0+0=2. Using the quantification table, one can prune the candidate 2-

itemset {EG} and then scan the compressed database to check if the rest of candidate 2-itemsets are frequent.

Candidate 3-itemsets are generated from frequent 2-itemsets which are {AE：2, BG：2, CD：2, CE：3, CG：2,

DE：2}. Finally, it outputs the frequent 3-itemset {CDE：2} after scanning the compressed database.

IV. EXPERIMENTAL RESULT:

 M2TQT and Merged Transactions Approach [1] were implemented in java programming language and all

experiments run on a PC of Intel Pentium 4 3.0GHz processor with DDR 400MHz 4GB main memory. Synthetic

datasets are generated by using the IBM dataset generator [15] for our experiments. Table III lists the parameters

used in the IBM dataset generator.

The parameter settings used to generate experimental datasets are shown in Table IV. The average length of the

transaction T is set as 4 and 10 and the average size of maximal potentially-large itemsets I as 4 and 5. To compare

with the Merged Transactions Approach, the generated datasets have the number of items N=8 and 50, and the

number of potentially-large itemset L=1000.

The dataset T4I5D10k is used to run, our algorithm, merged transactions approach and Apriori algorithm. Let the

average size of the potentially large itemset be 5 for the minimum supports 5%, 10%, 15%, and 20%, and compare

our algorithm with Apriori algorithm and merged transactions approach. The performance of our algorithm is much

better than the other two approaches as shown in Fig. 11. When the minimum support is 5%, the execution time of

merged transactions approach is about 1.72 times of our approach. Our method outperforms the other two more

than 40% as an average.

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c514

The performance of using a quantification table is also analyzed in our experiment. From Fig. 12, it shows that the

effect of using the table is low when the minimum support is lower. But the effect gets higher when the minimum

support is high because it is possible to reduce more I/O time. In general, the performance of using a quantification

table is better than without using it.

For incremental mining, the dataset T4I5D1K is used to run the experiments of merged transactions approach and

our algorithm. Let the average size of the potentially large itemset be 5 for the minimum supports 15%, 20%, 25%,

and 30%. Here, 20% of the dataset T4I5D1K are used for the updates and 80% as the original data. Fig. 13 shows

that four cases need to be considered in the incremental data mining. As in [16], our approach considers Case2 and

Case3. The performance of our algorithm is much better than merged transactions approach as shown in Fig. 14.

The average improvement of the execution time is about 8 times in favor of our approach.

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c515

V. CONCLUSIONS AND FUTURE WORK :

In this paper, a new approach called Ming Merged Transactions with the Quantification Table is proposed to

compress related transactions into a new transaction by scanning the transaction database only once. The M2TQT

approach utilizes the compressed transactions to mining association rule efficiently with a quantification table.

There are several advantages of M2TQT over the other approaches: (1) No multiple database scans, because

M2TQT reads the database only once if the compressed database fits into main memory. (2) Reduce the process

time of association rule mining because M2TQT prunes candidate itemsets which are impossible to become

frequent. (3) A compressed database can be decompressed to the original database to support transaction updates.

The M2TQT algorithm was implemented to compare with the Apriori and Merged Transactions Approach for large

datasets. The experiment results show that our approach performs the other two approaches. In the future, more

improvements on the compression rate are under investigation. Some interesting research issues related to

compression-based mining include the study of the best rate of compression for discovering frequent patterns. The

extension of M2TQT method for FP-tree [12], [14] is another interesting topic for future work.

REFERENCES :

s[1] M. C. Hung, S. Q. Weng, J. Wu, and D. L. Yang, "Efficient Mining of Association Rules Using Merged

Transactions," in WSEAS Transactions on Computers, Issue 5, Vol. 5, pp. 916-923, 2006.

 [2] M. Z. Ashrafi, D. Taniar, and K. Smith, "A Compress-Based Association Mining Algorithm for Large

Dataset," in Proceedings of International Conference on Computational Science, pp. 978-987, 2003.

[3] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "The KDD process for extracting useful knowledge from

volumes of data," Communications of the ACM, Vol. 39, pp. 27-34, 1996.

[4] E. Hullermeier, "Possibilistic Induction in Decision-Tree Learning," in Proceedings of the 13th European

Conference on Machine Learning, pp. 173-184, 2002.

[5] J. R. Quinlan, "C4.5: programs for machine learning," Morgan Kaufmann Publishers Inc, 1993.

 [6] A. K. Jain and R. C. Dubes, Algorithm for clustering data: Prentice-Hall, Inc., 1988.

 [7] R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules Between Sets of Items in Large

Databases," in Proceedings of the International Conference on Management of Data, pp. 207-216, 1993.

[8] R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules," in Proceedings of the 20th

International Conference on Very Large Data Bases, pp. 487-499, 1994.

[9] D. I. Lin and Z. M. Kedem, "Pincer-search: an efficient algorithm for discovering the maximum frequent set,"

IEEE Transactions on Knowledge and Data Engineering, Vol. 14, pp. 553-566, 2002.

[10] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, "Dynamic Itemset Counting and Implication Rules for Market

Basket Data," in Proceedings of the International Conference on Management of Data, pp. 255-264, 1997.

http://www.jetir.org/

© 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2106340 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c516

 [11] A. Savasere, E. Omiecinski, and S. Navathe, "An Efficient Algorithm for Mining Association Rules in Large

Databases," in Proceedings of the 21st International Conference on Very Large Data Bases, pp. 432-444, 1995.

 [12] J. Han, J. Pei, and Y. Yin, "Mining Frequent Patterns without Candidate Generation," in Proceedings of the

International Conference on Management of Data, pp. 1-12, 2000.

[13] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, "MAFIA: A maximal frequent itemset

algorithm," IEEE Transactions on Knowledge and Data Engineering, Vol. 17, pp. 1490-1504, 2005.

 [14] G. Grahne and J. Zhu, "Fast algorithms for frequent itemset mining using FP-trees," IEEE Transactions on

Knowledge and Data Engineering, Vol. 17, pp. 1347-1362, 2005.

[15] IBM Almaden Research Center, "Synthetic Data Generation Code for Associations and Sequential Patterns,"

URL:http://www.almaden.ibm. com/software/quest/, 2006.

 [16] D. W. L. Cheung, S. D. Lee, and B. Kao, "A general incremental technique for maintaining discovered

association rules," in Proceedings of the 15th International Conference on Database Systems for Advanced

Applications, pp. 185-194, 1997.

[17] D. Xin, J. Han, X. Yan, and H. Cheng, "Mining Compressed Frequent-Pattern Sets," in Proceedings of the

31st international conference on Very Large Data Bases, pp. 709-720, 200

http://www.jetir.org/

